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Recent experimental data of the Total and Elastic Measurement (TOTEM) collaboration [1]

at the CERN Large Hadron Collider (LHC) as well as cosmic ray measurement by the Pierre

Auger Collaboration [2] demonstrates the breakdown of the straightforward extrapolation of

the conventional ln s physics to beyond 10TeV [1-8]. Accordingly the naive phenomenology

based upon the idea of the bare simple pole pomeron with the intercept at t = 0 slightly

above unity is irrelevant at extremely high energies, but instead the concept of the clothed

physical pomeron with the unit intercept turns out to be of crucial importance for the self-

consistent interpretation of diffractive phenomena at asymptotically high energies [9-12]. The

bare pomeron is built up from the normal reggeon through dual topological unitarization. On

the other hand, the clothed physical pomeron is generated by multidiffractive unitarization

of the bare pomeron. The clothed pomeron is often referred to as the geometrical pomeron

(GP) [12]. The GP is universal in the sense that the asymptotic behaviour of the clothed

pomeron is independent of the fine details of dynamics building up and unitarizing the bare

pomeron. All unusual features of the physical pomeron are commonly inherent in universality

of the GP, which plays the role of the most typical guiding principle in pomeron physics. If

the GP parametrization is continued in t to beyond the lowest threshold, however, t-channel

unitarity is seriously violated because of the hard branching nature. It is then of importance to

investigate whether or not the GP universality is self-consistently guaranteed not only from the

s-channel point of view but also from the t-channel point of view, and how the universal GP

dynamically affects normal reggeons through the repeated pomeron exchange. In the present

communication, solutions to these key questions are retrospectively sketched at asymptotically

high energies after previous compendia of ours [12] on reggeon-pomeron interaction in proper

respect of the so-called hiding cut mechanism (HCM) of Oehme type [13] which might shed

some light upon geometrical aspects of a series of our publication on pomeron physics in the

70s. The best possible use is made of the double-partial-wave [DPW] calculus à la Bronzan and

Sugar [14] which is highly suitable for a perspicacious explanation of geometrical aspects of the

reggeized absorption in the presence of the GP. It is taken for granted that any multiple pomeron

interaction is correctly described on the basis of the Mandelstam pinch mechanism of the Regge

cut generation and the Gribov reggeon calculus of the enhanced Regge cut contribution, i.e.

the so-called reggeon field theory (RFT) [9-12].

Let us start with the ansatz that the GP amplitude MP (s, t) is synthetically written in the

1

Pomeron Geometrodynamics
– Universality of the Geometrical Pomeron –

H. Fujisaki

Department of Physics, Rikkyo University, Tokyo 171-8501

Summary
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1

scaling form

ImMP (s, t) = 4sy−δ (R(y))2 F (τ) ; τ = −t (R(y))2 (1)

at s → ∞ and t → 0, where R(y) = r0y
ν and y = ln(s/s0). The real part ReMP (s, t) is

obtained from eq. (1) through s− u crossing which reads

ReMP (s, t) ∼ π (ν − δ/2) y−1ImMP (s, t) (2)

in the forward diffraction cone, which is asymptotically negligible at s → ∞ and t → 0. Let

us now remember the fundamental constraints on δ and ν. Firstly, unitarity imposes δ ≥ 0.

Secondly, analyticity requires 0 < ν ≤ 1. Moreover, the indefinitely rising cross section is

realizable if and only if 0 ≤ δ < 2ν which rules out the non-shrinkage of the diffraction peak.

This situation is really confirmed by the recent phenomenological observations at LHC energies.

Consequently let us postulate 0 ≤ δ < 2ν and 0 < ν ≤ 1. It is a matter of course that the exact

geometrical scaling is assured for the elastic amplitude if and only if δ = 0. The GP partial

wave amplitude fP (t, J) is given by the Mellin transform of eq. (1) which is reduced to be

fP (t, J) = (J − 1)δ−2ν−1ζ(ρ) ; ρ = −r20t(J − 1)−2ν , (3)

where

ζ(ρ) = 4s0r
2
0

∫ ∞

0

dzz2ν−δe−zF (ρz2ν). (4)

Here, the scaling function ζ satisfies the asymptotic constraints: ζ(ρ → 0) ∼ constant; ζ(ρ →
∞) ∼ ρ(δ−2ν−1)/2ν . Different GP models disagree with each other only over explicit values of

δ and ν, and the interpolating form of ζ. As can easily be seen from eq. (3) as well as the

constraints on ζ, every GP trajectory function αP (t) is uniquely determined by ν through the

moving leading singular surface which reads ρ ∼ constant, i.e.

(αP (t)− 1)2ν ∼ r20t ; 0 < ν ≤ 1, (5)

irrespective of both δ and ζ. The GP partial wave amplitude (3) may then be asymptotically

described as

fP (t, J) ∼ s0r
2
0

(
(J − 1)2ν − r20t

)(δ−2ν−1)/2ν
; 0 ≤ δ < 2ν, 0 < ν ≤ 1 (6)
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2
in the immediate neighbourhood of t = 0, which is literally reduced to the familiar expression

of the bare simple pole pomeron in the case of 2ν = δ = 1. Let us postulate ν = n/2m, where

n;m = 1, 2, 3, · · · and n ≤ 2m. We then obtain

α
[j]
P (t) = 1 +

(
r20t

)1/2ν
exp (πij/ν) , (7)

where j = 0, 1, 2, · · · , n − 1. Since 0 < ν ≤ 1, α
[j]
P is not regular at t = 0 except exactly for

ν = 1/2, in striking contrast to the bare simple pole pomeron, i.e. 2ν = δ = 1. Let us next

turn our attention to the t-dependent motion of α
[j]
P in the J-plane. Except for integral values

of 2ν − δ, all branches α
[j]
P coalesce into a hard branch point at J = 1 as t tends to 0. If 2ν − δ

is integral, of course, the coalescence at t = 0 turns out to be a double pole or a triple pole

according as 2ν − δ = 1 or 2. Suppose t < 0. Then all pairs of branches with Reα
[j]
P (t < 0) > 1

are correctly removed off the physical sheet of the J-plane into unphysical sheets with the aid

of the left-hand fixed branch point at J = 1 which originates in the factor (J − 1)2ν with

0 < ν ̸= 1/2 < 1 of the scaling function ζ. This offers a typical exemplification of the HCM

of Oehme type. On the other hand, all branches with Reα
[j]
P (t < 0) < 1 are surely allowed to

exist in the complex conjugate form on the physical sheet of the J-plane. If ν = 1, ζ has no

HCM but instead uniquely yields the self-reproducing, colliding cut pomeron of Schwarz type

which reads

α
[±]
P (t) = 1± ir0

√
−t ; i.e. Reα

[j=0;1]
P (t < 0) = 1. (8)

Suppose 0 < t < t0, where t0 denotes the t-channel lowest threshold. Then the real positive

branch α
[0]
P , which evidently reads the most right, left-hand branch point, is guaranteed to

exist on the physical sheet of the J-plane so long as r0 ≤ 1/
√

t0. Thus the GP universality is

automatically consistent with both s-channel unitarity and the real analyticity as the natural

consequence of the HCM of Oehme type. If the GP partial wave amplitude (3) is continued

in t to beyond t0, then t-channel unitarity is inevitably violated because of the hard branching

structure at J = α
[j]
P (t). The pathological incompatibility of the GP with t-channel unitarity

can be remedied, however, by the self-consistent introduction of the shielding cut mechanism

(SCM) of Oehme type. We are legitimately led to a model amplitude f[P ](t, J) with the SCM

modification

f[P ](t, J) = fP (t, J)

[
ϕ1(t, J)−

ϕ2(t, J)

π

∫ α1(t)

−∞
dl

λ(t, l)fP (t, J − l + 1)

(l − 1− iϵ)ϕ2(t, J − l + 1)

]−1

(9)

3
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in the immediate neighbourhood of t = 0, where

λ(t, l) =
α1(t)− l

[α1(t) + r21t0 − l]
1/2

, (10)

α1(t) = 1 + r21(t− t0) (11)

and ϕ1;2 are regular, non-vanishing functions. Let us next examine the analytical structure of

the model amplitude (9). The iϵ procedure guarantees that f[P ](t, J) satisfies t-channel elastic

unitarity. The endpoint singularity of the l-integral generates the shielding branch point α
[j]
SC(t),

which reads

α
[j]
SC(t) = 1 + r21(t− t0) + (r

2
0t)

1/2ν exp (πij/ν) , (12)

where j = 0, 1, 2, · · · , n−1. Since ϕ1;2 are regular, non-vanishing, every shielding branch point at

J = α
[j]
SC(t) makes a soft contribution to f[P ](t, J), irrespective of the fine details of the branching

character. Thus all shielding branch points α
[j]
SC are fully consistent with t-channel unitarity.

As J tends to α
[j]
P , then the moving branch point tSC = {α[j]

SC}−1(J) exactly coincides with t0.

Consequently the cut running from tSC completely shields the t-channel elastic branch cut in the

limit of J → α
[j]
P . With the aid of the shielding machinery of the branches α

[j]
SC , all pairs of hard

branch points α
[j]
P are removed from the physical sheet of the J-plane under the continuation of

f[P ](t, J) into the second sheet of the t-plane. Thus the model amplitude (9) successfully satisfies

the continuity theorem. It is therefore possible to conclude that the shielding branch point α
[j]
SC

correctly satisfies the principal machinery of the SCM of Oehme type and that the GP ansatz is

always made compatible with t-channel elastic unitarity and the continuity theorem by the best

possible use of the SCM. It is of importance to note that phenomenological consequences of the

soft branch point α
[j]
SC are legitimately negligible at the asymptopia compared with those of the

hard GP branch point α
[j]
P . Accordingly the self-similarity of the GP amplitude (1), which is the

most important realization of universality of the clothed physical pomeron, is asymptotically

not destroyed by the self-consistent introduction of the SCM of Oehme type.

The impact parameter profile function aP (s, b) of the GP is given by the Fourier-Bessel

transform of eq. (1) which yields

ImaP (s, b) = y−δφ (b/R(y)) , (13)

4

where

φ(ξ) =

∫ ∞

0

dzzJ0(ξz)F (z
2) ; ξ = b/r0 · y−ν . (14)

The total and elastic cross sections read

σtot(s) = 8πr20y
2ν−δ

∫ ∞

0

dξξφ(ξ) (15)

and

σel(s) = 8πr20y
2ν−2δ

∫ ∞

0

dξξ (φ(ξ))2 , (16)

respectively. Equation (13) literally describes the scaled shape of the GP opacity distribution.

Accordingly the scaling parameter ξ in the b-plane uniquely corresponds to the scaling variable

ρ in the t-plane which is crucially responsible for the structure of the singular surface (5). Thus

the HCM of the GP is commonly inherent in the geometrical scaling. Let us remember the

fundamental constraints on the scaling function φ, i.e. (i) the unitarity bound 0 < φ(0) ≤ 1/2

in the case δ = 0, (ii) the analyticity bound φ(ξ) ≤ O (exp(−ξ)) at sufficiently large ξ and (iii)

the duality requirement of the non-peripheral distribution of φ(ξ). Thus the impact parameter

profile of the GP is correctly described by a smooth- or sharp-edged disc whose radius increases

sufficiently fast and whose central shape of opacity is sufficiently flat. It is parenthetically

mentioned that the magnitude of opacity is saturated at b = 0 with the unitarity upper bound

for the limiting case of both δ = 0 and φ(0) = 1/2, i.e. the so-called perfect absorption, in

which low b-waves are completely absorbed at very high energies, i.e. Ima(s, b = 0) ∼ 1/2 at

s → ∞, or equivalently
∫ ∞

0

dτF (τ) = 1 ; s → ∞ (17)

which in turn reads
∫ ∞

0

dτ ImMP (s, t) = 4s (R(y))2 (18)

at asymptotically high energies. The sum rule (17) or equivalently (18) has been confirmed à

la Srivastava [6] by the TOTEM data. We then eventually set up δ = 0. If and only if δ = 0,

the ratio σel(s)/σtot(s) is asymptotically s-independent as follows:

σel(s)/σtot(s) =

∫ ∞

0

dξξ (φ(ξ))2 /

∫ ∞

0

dξξφ(ξ) (19)

5
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5
in full agreement with the argument of Maor [15] at

√
s ≃ 1.8 ∼ 100TeV. If and only if δ = 0,

in addition, the ratio σtot(s)/8π⟨b2⟩ is asymptotically s-independent as follows:

σtot(s)/8π⟨b2⟩ =
(∫ ∞

0

dξξφ(ξ)

)2

/

∫ ∞

0

dξξ3φ(ξ), (20)

where ⟨b2⟩ reads the mean square radius of the opacity distribution in terms of which the slope
parameter B(s) of the forward elastic peak is expressed as

B(s) =
d

dt
ln (dσel/dt) |t=0 =

1

2
⟨b2⟩

=
1

2
r20y

2ν

∫ ∞

0

dξξ3φ(ξ)/

∫ ∞

0

dξξφ(ξ). (21)

Thus the exact geometrical scaling, i.e. δ = 0, is inevitable for the scaling behaviour of the

opaqueness of the hadronic-matter distribution undergoing a high-energy collision. The self-

similarity of the shape of the hadronic-matter distribution is guaranteed, irrespective of δ and

ν, in the general case of the GP, however. Unitarity requires both 0 ≤ σel(s)/σtot(s) ≤ 1/2

and 0 ≤ σtot(s)/8π⟨b2⟩ ≤ 1/2 which are satisfied under the ansatz of a sufficiently bounded

ξ-distribution of the scaling function φ. The experimental values of σel/σtot and σtot/8π⟨b2⟩
are much smaller than the unitarity upper bound 1/2, i.e. the so-called black disc limit, even

at the LHC energies. It is parenthetically mentioned that the unitarity upper bound, i.e. the

so-called black disc limit reads

φ(ξ) =
1

2
θ(1− ξ) ; ξ = b/r0 · y−1 (22)

in addition to δ = 0 and ν = 1 in accordance with the sharp cut-off, hadronic matter distribu-

tion, which yields

ImMP (s, t) = 2sr20y
2J1

(
r0y

√
−t

)

r0y
√
−t

(23)

and

fP (t, J) =
2s0r

2
0

[(J − 1)2 − r20t]
3/2

. (24)

We then obtain

σtot(s) = 2πr20y
2 (25)

6
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at the LHC energies. It is parenthetically mentioned that the unitarity upper bound, i.e. the

so-called black disc limit reads

φ(ξ) =
1

2
θ(1− ξ) ; ξ = b/r0 · y−1 (22)

in addition to δ = 0 and ν = 1 in accordance with the sharp cut-off, hadronic matter distribu-

tion, which yields

ImMP (s, t) = 2sr20y
2J1

(
r0y

√
−t

)

r0y
√
−t

(23)

and

fP (t, J) =
2s0r

2
0

[(J − 1)2 − r20t]
3/2

. (24)

We then obtain

σtot(s) = 2πr20y
2 (25)

6and

σel(s) = πr20y
2. (26)

Thus saturation of the celebrated Froissart upper bound on the total cross section is substan-

tiated as an inevitable consequence of the self-reproducing, colliding cut pomeron α
[±]
P (t) of

Schwarz type (8). Implications of saturation of the Froissart bound at the LHC energies and

beyond were elaborated by Block [8].

Let us now sketch diffractive dissociation in full accordance with the GP universality. At

least from the phenomenological point of view, inelastic collision consists of diffractive (D) and

non-diffractive (ND) components. The ND component dominates over the D component in

multi-particle production. The ND component is in turn dominantly controlled through short

range rapidity correlation (SRRC) mechanism with the minor correction from long range ra-

pidity correlation (LRRC) mechanism. The bare ND overlap function is described through the

SRRC component and reasonably well represented by the factorizable, simple pole pomeron

with the intercept αP (0) of which is slightly above unity. From the theoretical point of view,

therefore, absorptive correction are inevitable in order to guarantee the celebrated Froissart

bound at asymptotically high energies. The LRRC component is then obtained as a result of

the second step absorptive unitarization of the divergent SRRC component. Moreover the D

component is generated as a natural consequence of the shadow effect of the ND component

within the general framework of the absorptive unitarization. Theoretical features of the solu-

tion of the absorptive unitarization are epitomized from the point of view of the GP universality.

The D states are labelled i; j; k = 1, 2, 3, · · · . In particular, the elastic state is designated as
i; j; k = 1. Impact parameter profiles of the D amplitude and ND overlap function between i

and j states are designated as Hij(s, b) and Mij(s, b), respectively. The absorptive s-channel

unitarity is then written in the form

2Hij(s, b) =
∑
k

Hik(s, b)Hkj(s, b) +
∑
k

(δik −Hik(s, b))Mkj(s, b), (27)

under the ansatz of reality of both Hij(s, b) and Mij(s, b) at the asymptopia. Let us suppose

the s-channel factorizability of Mij(s, b) in the sense of

Mij(s, b) = γi(s, b)γj(s, b). (28)
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The matrix M(s, b) then has one and the only one non-vanishing eigenvalue which reads

λ(s, b) =
∑
i

(γi(s, b))
2 . (29)

The matrix H(s, b) is simultaneously diagonalizable in terms of the complete set of eigenstates

of M(s, b) and yields

Hij(s, b) = h(s, b)/λ(s, b) · γi(s, b)γj(s, b)

= hi(s, b)hj(s, b), (30)

where the unique non-vanishing eigenvalue h(s, b) reads

h(s, b) =
(
2 + λ(s, b)−

(
4 + (λ(s, b))2

)1/2)
/2 . (31)

Thus the D amplitude between D states is correctly obtained as the shadow effect of totality of

ND transitions between D and all possible ND states. The D component is described in terms

of the factorizable ND overlap function. The SRRC dominance in multi-hadronic production

and αP (0) > 1 for the bare pomeron yield inevitably the divergent, central b-distribution of

the ND overlap function at the asymptopia. As a consequence, the divergence of the central

distribution of M11(s, b) = (γ1(s, b))
2; 0 < ξ � 1, is supposed in natural correspondence to

the SRRC dominance in multiparticle production and αP (0) > 1 for the bare pomeron. Since

λ(s, b) ≥ (γ1(s, b))
2, eq. (31) immediately yields

h(s, b) ≃ 1− (λ(s, b))−1 ; 0 < ξ � 1 (32)

at s → ∞. The central distribution of the impact parameter profiles σtot(s, b), σel(s, b),

σinel;D(s, b) and σinel;ND(s, b) then turn out to be

σtot(s, b) = 2 (γ1(s, b))
2 /λ(s, b), (33)

σel(s, b) = (γ1(s, b))
4 / (λ(s, b))2 , (34)

σinel;D(s, b) = (γ1(s, b))
2 /λ(s, b)

×
(
1− (γ1(s, b))

2 /λ(s, b)
)

(35)

and

σinel;ND(s, b) = (γ1(s, b))
2 /λ(s, b), (36)

8
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8respectively, at the asymptopia. Equations (33), (34), (35) and (36) bring forth

σel(s, b) + σinel;D(s, b) = σinel;ND(s, b) = 1/2 · σtot(s, b) ; 0 < ξ � 1, (37)

or equivalently

(σel(s) + σinel;D(s)) /σtot(s) = σinel;ND(s)/σtot(s) = 1/2 (38)

at asymptotically high energies. Accordingly saturation of the so-called Pumplin bound on the

D component is materialized as the unique solution of the absorptive s-channel unitarity. The

inelastic D component is generated and stabilized in association with the elastic component

through the shadow effect of the inelastic ND component. Thus there seems to be no per-

suasive reason to claim that the GP contribution is significantly different between σel(s) and

σinel;D(s). It is otherwise impossible to make a well-defined distinction between the D and the

ND mechanisms within the general framework of the absorptive unitarization. It is of interest

to note that the asymptotic relation (38) is qualitatively not too far from the experimental

information at the LHC energies, i.e. σel ∼ 25mb, σinel;D ∼ 15mb and σtot ∼ 100mb [4].

The concept of universality plays the role of the most important guiding principle in pomeron

physics. We postulate by universality that the asymptotic behaviour of the GP is independent

of the fine details of the promotion mechanism of the bare pomeron. Let us parenthetically

remind once again the diffractive single channel approximation in which λ(s, b) = (γ1(s, b))
2;

0 < ξ � 1. Then the sharp-edged, complete black disc pomeron provides the unique solution

of eq. (27), which offers a naive exemplification of universality as well as the maximization of

σtot(s) and inevitably yields

σel(s) = σinel;ND(s) = 1/2 · σtot(s) = πr20y
2 (39)

at asymptotically high energies. Saturation of eq. (39) is too far from the experimental informa-

tion even at the LHC energies. Consequently the diffractive single channel approximation may

be of no interest at least from the phenomenological point of view. Thus we are naturally led

to the diffractive many channel paradigm. Then the ratio (γ1(s, b))
2 /λ(s, b) in turn cannot be

uniquely determined just through the general properties of the absorptive s-channel unitarity.

Accordingly the absorptive unitarization is not so sufficiently powerful as to guarantee auto-

matically the GP universality in the diffractive many channel algorithm. Fundamental physics

underlying the GP universality undoubtedly deserves more than passing consideration.
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We are now confronted with an interesting problem: how the GP universality affects nor-

mal reggeons in reggeon-pomeron interaction. Both the Mandelstam pinch mechanism and the

Gribov reggeon calculus provide us with the standard machinery which yields a typical materi-

alization of the GP universality in reggeon-pomeron dynamics [9-12]. The leading corrections

to any normal reggeon through the repeated pomeron exchange are in fact estimated as the

effect of the simultaneous exchange of the GP and the normal reggeon. In order to clarify

the principal machinery of the universal GP in the GP-reggeon dynamics, let us remember

the discussion on the GP parametrization (3). The t-dependence of the singular surface (5) is

uniquely determined through the scaling parameter ρ. The GP is then described as just one

moving leading singular surface, irrespective of the detailed branching structure. Therefore the

forward scattering amplitude of the GP exchange is asymptotically factorizable in the stan-

dard manner as the consequence of the scaling form (3). From the aesthetic point of view, let

us assume that the input amplitude MR(s, t) of the normal reggeon exchange is synthetically

written in the scaling form

ImMR(s, t) = γs0 (s/s0)
α FR(τR) ; τR = −α′ty2νR (40)

at s → ∞ and t → 0, where 0 < νR = δR/2 ≤ 1. The partial wave amplitude fR(t, J) of the

normal reggeon exchange is synthetically expressed by

fR(t, J) = (J − α)−1 ζR(ρR) ; ρR = −α′t (J − α)−2νR , (41)

where

ζR(ρR) = γs0

∫ ∞

0

dze−zF
(
ρRz

2νR
)
. (42)

Here, the scaling function ζR satisfies the asymptotic constraints: ζR (ρR → 0) ∼ constant;

ζR (ρR → ∞) ∼ ρ
−1/2νR
R . The reggeon trajectory function αR(t) then satisfies the moving leading

singular surface which reads ρR ∼ constant, i.e.

(αR(t)− α)2νR ∼ α′t ; 0 < νR ≤ 1. (43)

That is, the normal reggeon is controlled by just one moving leading singular surface, irrespec-

tive of the fine details of the branching nature. Accordingly factorizability of the input forward

scattering amplitude of the normal reggeon exchange is asymptotically guaranteed in the usual

10
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sense as the consequence of the scaled form (41). The impact parameter profile function aR(s, b)

of the normal reggeon exchange is expressed as

ImaR(s, b) = γ/4α′ · (s/s0)α−1 y−2νRφR (ξR) ; ξR = b/
√

α′ · y−νR (44)

in accordance with the scaled shape of the opacity distribution of the normal reggeon, where

φR (ξR) =

∫ ∞

0

dzzJ0 (ξz)FR

(
z2
)
. (45)

Our purpose is reduced to the examination of the structure of the clothed leading singular

surface in the output partial wave amplitude fRP (t, J) which originates from the simultaneous

exchange of the GP and the normal reggeon. As a valid generalization, hereafter, the parameter

δ is tentatively considered as a free parameter, not fixed at δ = 0, in the present context. It

is almost needless to mention that the simultaneous exchange of αR and αP is successfully

described at the asymptopia in terms of the modified profile function

Imα̃R(s, b) ≈ (s/s0)
α−1 y−δ−2νRφ̃R (ξR; ξ) ; φ̃R (ξR; ξ) ∼ φR (ξR)φ (ξ) (46)

at sufficiently high energies, where the double exchange mechanism of Mandelstam type has

been postulated for 0 ≤ δ < 2ν, 0 < ν ≤ 1 and 0 < νR = δR/2 ≤ 1, in general. Since

ξR = ξ · r0/
√

α′ · yν−νR , (47)

the ratio ξ/ξR eventually tends to 0 or ∞ in the limiting case of s → ∞ according to whether

ν > νR or ν < νR. In consequence, the two antipodal cases: (i) 0 < νR < ν ≤ 1 and (ii)

0 < ν < νR ≤ 1 can be examined in the completely symmetric manner. Let us suppose the

case (i) [(ii)]. We then obtain φ̃R ∼ φR [φ̃R ∼ φ] at the asymptopia. Therefore the leading

singular surface of the Mellin-Fourier-Bessel transform fRP (t, J) of the profile function (46) is

asymptotically controlled just by the scaling parameter ξR [ξ] or equivalently by the scaling

variable ρR = −α′t (J − α)−2νR [ρ̃R = −r20t (J − α)−2ν ]. The output, leading reggeon trajectory

function α̃R(t) arising from the simultaneous exchange of αR and αP satisfies the moving leading

singular surface {
(α̃R(t)− α)2νR ∼ α′t ; 0 < νR < ν ≤ 1

(α̃R(t)− α)2ν ∼ r20t ; 0 < ν < νR ≤ 1,
(48)

irrespective of δ, ζ and ζR. The forward amplitude of the output reggeon exchange is then

factorizable in the conventional fashion, irrespective of the detailed branching structure of the
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output, moving leading singular surface (48). The principal conclusion in the case (i) [(ii)] is

as follows. If the branching nature of the trajectory function of the input reggeon is less [more]

singular at t = 0 than that of the GP, then the output reggeon carries universally the same

trajectory function as that of the input reggeon [then the output reggeon carries the trajectory

function, the t-dependence [the intercept] of which reads universally the same as that of the

GP [the input reggeon]]. In order to obtain a deeper understanding of the consistency of

these results with the celebrated Mandelstam pinch mechanism, let us consider the special case

0 < νR = ν < 1. The standard Mandelstam mechanism is straightforwardly applicable to this

example and yields the output, leading singular surface

(α̃R(t)− α)2ν ∼ α̃′t ; 0 < νR = ν < 1, (49)

where

α̃′ = α′ (1 + (α′/r20)
1/2(1−ν)

)2(ν−1)
(50)

which is reduced to the familiar expression

α̃′ = α′r20/
(
α′ + r20

)
(51)

in the limiting case of νR = ν = 1/2. Factorization of the output forward amplitude is

guaranteed in the ordinary manner. Equation (43) is formally written in the form

(αR(t)− α)2ν ∼ ᾱ′t, (52)

where

ᾱ′ = (α′)
ν/νR t(ν−νR)/νR . (53)

Since we are primarily interested in the immediate neighbourhood of t = 0, the case (i) [(ii)] le-

gitimately corresponds to the special example mentioned above in the limit ᾱ′/r20 → 0 [ᾱ′/r20 →
∞]. If α′ is replaced by ᾱ′ in eq. (50), then α̃′ → ᾱ′ or α̃′ → r20 according to whether ᾱ

′/r20 → 0

or → ∞. Thus the surface (48) is correctly identifiable with the limiting case of eq. (49) and

evidently obeys the Mandelstam generating mechanism of Regge cuts. Accordingly the afore-

mentioned, apparently antipodal phenomena are not only fully compatible with each other but

also furnish the typical substantiation of universality of the GP in pomeron-reggeon interaction.

12
Elaboration of the Regge cut generation is requisite for the case ν = 1 and/or νR = 1, however.

For the detailed discussion, we merely refer to ref. [12; Riv.].

In order to clarify the fundamental aspects of the absorptive mechanism of the GP, let us

assume the most standard parametrization of the single-reggeon exchange amplitude MR(s, t):

ImMR(s, t) = γs0 exp [αR(t)y] , (54)

i.e. νR = δR/2 = 1/2, where

αR(t) = α + α′t. (55)

We then obtain immediately the partial wave amplitude fR(t, J) and the impact parameter

profile function aR(s, b) as follows:

fR(t, J) =
γs0

J − αR(t)
(56)

and

ImaR(s, b) =
γ

8α′y
exp

[
(α − 1)y − b2/4α′ · y−1

]
, (57)

respectively. The best possible use is made of the DPW algorithm in which the DPW amplitude

a(J, b) is defined by the Fourier-Bessel transform of the partial wave amplitude f(t, J):

a(J, b) =
1

4s0

∫ ∞

0

d
√
−t

√
−tJ0

(
b
√
−t

)
f(t, J), (58)

or equivalently by the Mellin transform of the impact parameter profile function a(s, b):

a(J, b) =

∫ ∞

0

dy exp [−(J − 1)y] Ima(s, b). (59)

Accordingly the DPW amplitude aP (J, b) of the GP is reduced to be

aP (J, b) =
1

ν

(
b

r0

)(1−δ)/ν ∫ ∞

0

dξξ(δ−ν−1)/νφ(ξ)

× exp
[
−(J − 1)(b/r0 · ξ−1)1/ν

]
; 0 ≤ δ/2 < ν ≤ 1. (60)

Similarly the DPW amplitude aR(J, b) turns out to be

aR(J, b) =
γ

4α′K0

(
b
√
(J − α)/α′

)
, (61)
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or equivalently by the Mellin transform of the impact parameter profile function a(s, b):

a(J, b) =

∫ ∞

0

dy exp [−(J − 1)y] Ima(s, b). (59)

Accordingly the DPW amplitude aP (J, b) of the GP is reduced to be

aP (J, b) =
1

ν

(
b

r0

)(1−δ)/ν ∫ ∞

0

dξξ(δ−ν−1)/νφ(ξ)

× exp
[
−(J − 1)(b/r0 · ξ−1)1/ν

]
; 0 ≤ δ/2 < ν ≤ 1. (60)

Similarly the DPW amplitude aR(J, b) turns out to be

aR(J, b) =
γ

4α′K0

(
b
√
(J − α)/α′

)
, (61)

13where K0 is the modified Bessel function of order zero. The absorbed, partial wave amplitude

f[R](t, J) can be written in the form

f[R](t, J) = fR(t, J) + fRP (t, J) (62)

within the framework of the reggeized absorption approach, where fRP (t, J) means the partial

wave amplitude in association with the simultaneous exchange of the GP and the normal

reggeon. By making use of the DPW amplitudes aP (J, b) and aR(J, b), fRP (t, J) is expressed

as

fRP (t, J) = 8s0

∫c+i∞∫

c−i∞

dl1dl2
(2πi)2

1

J + 1− l1 − l2

×
∫ ∞

0

dbbJ0

(
b
√
−t

)
aP (l1, b)aR(l2, b) ; 0 ≤ δ/2 < ν ≤ 1, (63)

where the signature factor of the reggeon has been left out of consideration in the present

context and the l1 [l2] contour is chosen so as to enclose, in the clockwise [counter-clockwise]

direction, the pole at J = l1 + l2 − 1 [the branch cut of K0 running along the real axis from

−∞ to α ]. The partial wave amplitude fRP (t, J) is then reduced to be

fRP (t, J) = −γs0
α′ν

r
(δ−1)/ν
0

∫ ∞

0

dξξ(δ−ν−1)/νφ(ξ)

×
∫ ∞

0

dbb−(δ−ν−1)/νJ0

(
b
√
−t

) ∫ ∞

0

dxJ0

(
b
√

x/α′
)

× exp
[
−(J − α + x)(b/r0 · ξ−1)1/ν

]
, (64)

where use has been made of the relation [14]

K0(iz)−K0(−iz) = −iπJ0(z) (65)

in the l2 integration of eq. (63). The inverse Mellin transform of eq. (64) yields the absorptive

reggeon amplitude MRP (s, t) as follows:

ImMRP (s, t) = −γs0r
2
0

α′ y2ν−δ−1eαy
∫ ∞

0

dξξφ(ξ)J0

(
ξr0y

ν
√
−t

)

× exp

[
−ξ2r20
4α′ y

2ν−1

]
; 0 ≤ δ/2 < ν ≤ 1. (66)

The absorbed reggeonic amplitude M[R](s, t) is then literally written in the form

ImM[R](s, t) = ImMR(s, t) + ImMRP (s, t). (67)
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ν
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14Thus our purpose is reduced to the detailed estimation of eq. (66) at asymptotically high

energies under the ansatz of an explicit ξ-dependence of φ. We take it for granted that φ

correctly satisfies the aforementioned fundamental restrictions, i.e. (i) 0 < φ(0) ≤ 1/2 in the

case δ = 0, (ii) φ(ξ) ≤ O
(
e−ξ

)
at sufficiently large ξ and (iii) the non-peripheral distribution

of φ(ξ). The intercept at t = 0 of the trajectory function of the absorptive leading reggeon

is then uniquely given by α, irrespective of δ, ν and φ, which is consistent with the fact that

absorptive Regge singularities are generated through the Mandelstam mechanism. Unless the

leading singular surface of eq. (48) carries about the input trajectory function αR(t), therefore,

the physical region in which absorptive Regge singularities are dominated by the input reggeon

is confined to an s-dependent, immediate neighbourhood of −t ≃ 0 which exactly shrinks to

t = 0 at s → ∞. In the conventional case of the bare simple pole pomeron, i.e. 2ν = δ = 1,

indeed, the domain mentioned above asymptotically reads

−t �
(
α′ + r20

)
/α′2 · ln ln(s/s0)/ ln(s/s0). (68)

However, our primary concern is the possible predominance of the input reggeon over absorptive

leading Regge singularities at least in a s-independent, finite physical domain. Consequently our

next step is to elaborate the possible criterion for discriminating whether or not the trajectory

function α̃R(t) of the absorptive leading Regge singularity is surely described by αR(t).

Explicit estimation of the absorptive reggeonic amplitude (66) is performed at the asymp-

topia in the presence of a wide class of smooth- or sharp-edged disc GP. Let us first examine

the reggeized absorption in the presence of the smooth-edged disc GP with the shape function

φ(ξ) which reads

φ(ξ) = φ(0) exp
(
−ξ2µ

)
; µ ≥ 1/2, (69)

where 0 < φ(0) ≤ 1/2 in the case δ = 0. Suppose µ > 1. Irrespective of δ, then, the asymptotic

evaluation eq. (66) yields the absorptive leading Regge singularity with αR(t) if and only if

1/2 ≤ ν ≤ 1. The result reads

ImMRP (s, t) ≃ −2γs0φ(0)y−δ

×

{
eαR(t)y − µ− 1

µ
eαy exp

[
−
(

r20
4α′y

2ν−1

)µ/(µ−1)
]

× J0

((
r20
4α′y

2µν−1

)1/2(µ−1) (
−r20t

)1/2
)}

; 1/2 ≤ ν ≤ 1 (70)
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at extremely high energies. Suppose 1/2 ≤ µ ≤ 1. Irrespective of δ, then, we obtain asymp-

totically the absorptive leading Regge trajectory function αR(t) if and only if 1/2 < ν ≤ 1.

Equation (66) results in

ImMRP (s, t) ≃ −2γs0φ(0)y−δ

×

{
eαR(t)y − 1

2

1− µ

1 + µ
eαy

(
r20
4α′y

2ν−1

)2µ/(µ−1)
}

; 1/2 < ν ≤ 1 (71)

at asymptotically high energies. In the other cases of both µ > 1; 0 < ν < 1/2 and 1/2 ≤ µ ≤ 1;

0 < ν ≤ 1/2, however, the absorptive leading Regge trajectory function α̃R(t) satisfies

(α̃R(t)− α)2ν ∝ r20t ; 0 < ν ≤ νR = 1/2 (72)

in association with the criterion (ii). In both of these cases, therefore, the asymptotic behaviour

of the absorbed reggeonic amplitudeM[R](s, t) is dominantly described, irrespective of δ, by a set

of absorptive Regge singularities, instead of the input reggeon. It is parenthetically mentioned

that the hypothetical ansatz of the scaled, dipole structure of the hadronic matter distribution

à la Chou and Yang yields

φ(ξ) = φ(0)/8 · ξ3K3(ξ) ; ξ = b/r0 · y−ν , (73)

where K3 reads the modified Bessel function of order 3. The tail contribution of φ(ξ) then

turns out to be

φ(ξ) ∼ ξ5/2e−ξ (74)

in sharp contrast to the Gaussian distribution as well as the sharp cut-off distribution. Let us

next investigate the reggeized absorption in the presence of the sharp-edged disc GP with the

shape function φ(ξ) which reads

φ(ξ) =

{
φ(0) exp (−ξ2µ) θ (ξ0 − ξ) ; µ ≥ 1/2

φ(0)θ (ξ0 − ξ) ; µ = 0,
(75)

where 0 < φ(0) ≤ 1/2 in the case δ = 0. Suppose µ > 1. Irrespective of δ, then, the absorptive

leading Regge singularity is accompanied with αR(t) if and only if 1/2 ≤ ν ≤ 1. Equation (66)

brings forth

ImMRP (s, t) ≃ −2γs0φ(0)y−δ

×
{
eαR(t)y −N (s, t, ξ0, ν)

}
; 1/2 < ν ≤ 1 (76)
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and

ImMRP (s, t) ≃ −2γs0φ(0)y−δ

×

{
eαR(t)y − θ

(
ξ0 −

(
r20
4α′

)1/2(µ−1)
)[

µ− 1

µ
N

(
s, t,

(
r20
4α′

)1/2(µ−1)

, ν =
1

2

)

+
r20
4α′µ

ξ2−2µ
0 exp

[
ξ20r

2
0

4α′ − ξ2µ0

]
N

(
s, t, ξ0, ν =

1

2

)]

−θ

((
r20
4α′

)1/2(µ−1)

− ξ0

)
N

(
s, t, ξ0, ν =

1

2

)}
; ν = 1/2 (77)

in replacement of eq. (70), at sufficiently high energies, where

N (s, t, ξ0, ν) = eαy exp

(
−ξ20r

2
0

4α′ y
2ν−1

)
J0

(
ξ0y

ν
(
−r20t

)1/2)
. (78)

Suppose 1/2 ≤ µ ≤ 1. Irrespective of δ, then, the absorptive leading Regge singularity carries

about αR(t) if and only if 1/2 < ν ≤ 1. Equation (66) gives rise to

ImMRP (s, t) ≃ −2γs0φ(0)y−δ

×

{
eαR(t)y − 1

2

1− µ

1 + µ
eαy

(
r20
4α′y

2ν−1

)2µ/(µ−1)

−N (s, t, ξ0, ν)

}
; 1/2 < ν ≤ 1, (79)

instead of eq. (71), at very high energies. Suppose µ = 0. Irrespective of δ, then, the absorptive

leading Regge trajectory function αR(t) is obtained if and only if 1/2 ≤ ν ≤ 1. The asymptotic

estimation of eq. (66) yields

ImMRP (s, t) ≃ −2γs0φ(0)y−δ

×
{
eαR(t)y −N (s, t, ξ0, ν)

}
; 1/2 ≤ ν ≤ 1 (80)

at extremely high energies. So far the signature factor of the reggeon has bean thoroughly kept

out of consideration. Let us suppose the standard ghost-killing mechanism in accordance with

the analytical structure of aP (J, b). Then the criterion for ascertaining the possible predomi-

nance of the input simple pole reggeon over absorptive leading Regge singularities is irrespective

of the detailed structure of the signature of the reggeon. On the basis of these observations,

we are led to the following salient conclusions with regard to the reggeized absorption in the
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presence of a wide class of GP. Firstly, irrespective of the s-dependence of the magnitude of

opacity, the absorptive leading Regge singularity is accompanied with the input trajectory func-

tion αR(t) if and only if the radius of the GP disc expands not less fast than (ln(s/s0))
1/2. The

input reggeon is then completely cancelled in the absorbed, partial wave amplitude f[R](t, J)

by the absorptive leading Regge singularity of αR(t) if and only if the radius of the GP disc

expands not less fast than (ln(s/s0))
1/2 and the magnitude of opacity is saturated at b = 0

with the unitarity upper bound, i.e. δ = 0 and φ(0) = 1/2. In the case of the GP disc

whose radius grows faster then (ln(s/s0))
1/2, both of these situations are attainable, irrespec-

tive of the ξ-dependence of the central shape of opacity. In the case of the GP disc whose

radius grows like (ln(s/s0))
1/2, however, both of these situations are realizable if and only if

the ξ-dependence of the shape of opacity is flatter than the Gaussian distribution at least in

the region b � r0 (ln(s/s0))
1/2. Secondly, irrespective of the s-dependence of the magnitude of

opacity, the asymptotic behaviour of the absorbed reggeonic amplitude M[R](s, t) is dominantly

controlled by the input reggeon, at least in a s-independent, finite physical domain which reads

−t � r20/4α
′2 for the smooth-edged disc GP and −t � ξ20r

2
0/4α

′2 for the sharp-edged disc GP,

respectively, if and only if the radius of the GP disc stretches faster than (ln(s/s0))
1/2, the

magnitude of opacity is not completely black even at b = 0 and the ξ-dependence of the central

shape of opacity is not less flat than the Gaussian distribution. In the case of the smooth-edged

disc GP whose central shape of opacity is described by the Gaussian distribution, this is attain-

able if and only if the radius extends faster than (ln(s/s0))
1/2. In the case of the smooth-edged

disc GP whose central shape of opacity is more black than the Gaussian distribution, this is

attainable if and only if the radius extends more and more fast according as the central shape

becomes flatter. Strictly speaking, (2µ − 1)/2µ < ν ≤ 1 in the case µ > 1. Consequently ν

tends to 1 as µ unboundedly increases. It is parenthetically mentioned that the flat sharp-edged

disc GP can legitimately be identified with the limiting case of µ = ∞, i.e. ν = ξ0 = 1. In

particular, in the case of the smooth-edged disc GP whose radius extends like ln(s/s0), this is

realizable if and only if the shape of opacity is not less flat than the Gaussian distribution in

the region b � r0 ln(s/s0). Similarly, in the case of the sharp-edged disc GP, this is achievable

if and only if the radius increases like ln(s/s0) and the shape of opacity is not less flat than the

Gaussian distribution in the region b � r0 ln(s/s0). Thirdly, irrespective of the s-dependence

of the magnitude of opacity, the asymptotic behaviour of the absorbed reggeonic amplitude

18

and
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Suppose 1/2 ≤ µ ≤ 1. Irrespective of δ, then, the absorptive leading Regge singularity carries

about αR(t) if and only if 1/2 < ν ≤ 1. Equation (66) gives rise to
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{
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instead of eq. (71), at very high energies. Suppose µ = 0. Irrespective of δ, then, the absorptive

leading Regge trajectory function αR(t) is obtained if and only if 1/2 ≤ ν ≤ 1. The asymptotic

estimation of eq. (66) yields

ImMRP (s, t) ≃ −2γs0φ(0)y−δ

×
{
eαR(t)y −N (s, t, ξ0, ν)

}
; 1/2 ≤ ν ≤ 1 (80)

at extremely high energies. So far the signature factor of the reggeon has bean thoroughly kept

out of consideration. Let us suppose the standard ghost-killing mechanism in accordance with

the analytical structure of aP (J, b). Then the criterion for ascertaining the possible predomi-

nance of the input simple pole reggeon over absorptive leading Regge singularities is irrespective

of the detailed structure of the signature of the reggeon. On the basis of these observations,

we are led to the following salient conclusions with regard to the reggeized absorption in the
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M[R](s, t) is dominated by a set of absorptive Regge singularities in the whole physical region of

the t-plane except for a s-dependent, immediate neighbourhood of −t ≃ 0 which exactly shrinks

to t = 0 at s → ∞, unless the radius of the GP disc increases not less fast than (ln(s/s0))
1/2 and

the central shape of opacity is not less flat than the Gaussian distribution. Let us recapitulate,

by way of parenthesis, that the asymptotic behaviour of the absorbed reggeonic amplitude is

controlled by the input simple pole reggeon, irrespective of the s-dependence of the magnitude

of opacity of the GP disc, at least in a s-independent, physical domain of the t-plane, if and

only if the impact parameter profile of the GP is described by a smooth- or sharp-edged disc

whose radius stretches sufficiently fast, whose magnitude of opacity is not completely black

even at b = 0 and whose central shape of opacity shows sufficiently flat distribution.

Let us summarize major features of the GP. Firstly, the HCM of Oehme type naturally

originates in the scaling form of the GP amplitude and correctly guarantees the consistency of

the GP universality with s-channel unitarity, the real analyticity and the asymptotic factoriz-

ability. Secondly, the self-similarity of the GP is made fully compatible with t-channel unitarity

by the self-consistent introduction of the SCM of Oehme type. Thirdly, the singular surface

of the output reggeon remains the same as that of the input reggeon or simulates that of the

GP with the exception of the intercept at t = 0 under the GP-reggeon interaction, according

to whether the trajectory function of the input reggeon is less singular at t = 0 than that of

the GP or more singular at t = 0. Let us turn our attention to major aspects of the reggeized

absorption in the presence of the GP. The recent phenomenological observation at the LHC

energies and beyond suggest that the total cross section σtot(s) asymptotically rises faster than

ln(s/s0) in addition to the so-called perfect absorption. We then postulate 1/2 < ν ≤ 1, δ = 0

and φ(0) = 1/2 without loss of generality. On the basis of the present discussion on reggeon-

pomeron interaction, therefore, it will be possible to predict that the absorptive leading Regge

singularity carries the trajectory function αR(t) of the input simple pole reggeon, that the

input simple pole reggeon is completely cancelled by the absorptive leading reggeon of αR(t)

in the absorbed, partial wave amplitude f[R](t, J) and that the absorbed reggeonic amplitude

M[R](s, t) is asymptotically described by a set of absorptive Regge singularities instead of the

input reggeon. High-statistics experimental data on hadronic forward scattering are requisite

at the next LHC energies, e.g. 14TeV for examining these predictions in association with the
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in describing high-energy soft interaction during half a century. We are now in a position to

build up a unified model of the pomeron which not only describes high-energy soft interaction

at low kT in terms of the so-called soft pomeron, i.e. the vacuum exchange object, but also

applies to the high kT pQCD domain as a smooth transition into the so-called hard pomeron or

equivalently the pQCD pomeron, i.e. the sum of ladder diagrams of interacting reggeized glu-

ons [16]. The partonic structure of the bare pQCD pomeron is extrapolated into the soft region

and reproduces the main features of the soft pomeron as an inevitable consequence of significant

absorptive corrections in the sense of the multi-pomeron effect. Various intriguing models are

now available, e.g. conventional parametrization analysis [5], QCD mini-jet paradigm [6], QCD

inspired RFT algorithm [7], QCD inspired multi-channel eikonal model [16], QCD colour-glass-

condensate picture [17] and AdS/CFT approach [18]. In particular, the pomeron in N = 4

SUSY may be dual-symmetrically described à la Lipatov [18] as the reggeized graviton on the

AdS space. Thus the pomeron calculus might be reduced to the algorism based upon the ef-

fective action for the ensemble of reggeized gravitons. It is undoubtedly of supreme interest in

the pomeron geometrodynamics to clarify whether or not gravity sheds some new light upon

fundamental physics underlying the GP universality.
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Phys. Rev. D, 11 (1975) 1191.

[14] Bronzan J. B. and Sugar R. L., Phys. Rev. D, 8 (1973) 3049.

[15] Maor U., Diffraction 2010 ; AIP Conf. Proc., 1350, ed. M. Capua et. al. (AIP, 2011),

p.191.

[16] Martin A. D., Ryskin M. G. and Khoze V. A., ditto, p.183.

[17] Levin E. and Rezaeian A. H., ditto, p.243.

[18] Lipatov L. N., ditto, p.219.

21

[6] Srivastava Y., ditto.

[7] Ostapchenko S., ditto.

[8] Block M. M., Phys. Rep., 436 (2006) 71.

[9] See, for example, Gribov V. N., Strong Interactions of Hadrons at High Energies (Cam-

bridge Univ. Press, 2009).

[10] Abarbanel H. D. I., Rev. Mod. Phys., 48 (1976) 435.

[11] Bakar M. and Ter-Martirosyan K. A., Phys. Rep., 28 (1976)1.

[12] Fujisaki H., Proceedings of the Japan-U.S. Seminar on Geometric Models of the Elementary

Particles; OS-GE 76-3 (Osaka Univ., 1976), p.55; Riv. Nuovo Cim., 7 (1977) 470; Particles

and Nuclei, ed. Terazawa (World Sci., 1986), p.23.

[13] Oehme R., Springer Tracts in Modern Physics, 61, ed. G. Höhler (Springer, 1972), p.109;
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